Wyss Institute’s Organ Chips Get Smart and Go Electric

Organs-on-Chips (Organ Chips) are emerging as powerful tools that allow researchers to study the physiology of human organs and tissues in ways not possible before. By mimicking normal blood flow, the mechanical microenvironment, and how different tissues physically interface with one another in living organs, they offer a more systematic approach to testing drugs than other in vitro methods that ultimately could help to replace animal testing.

As it can take weeks to grow human cells into intact differentiated and functional tissues within Organ Chips, such as those that mimic the lung and intestine, and researchers seek to understand how drugs, toxins or other perturbations alter tissue structure and function, the team at the Wyss Institute for Biologically Inspired Engineering led by Don Ingber has been searching for ways to non-invasively monitor the health and maturity of cells cultured within these microfluidic devices over extended times. It has been particularly difficult to measure changes in electrical functions of cells grown within Organ Chips that are normally electrically active, such as neuronal cells in the brain or beating heart cells, both during their differentiation and in response to drugs.

Now, Ingber’s team has collaborated with Wyss Core Faculty member Kit Parker and his group to bring solutions to these problems by fitting Organ Chips with embedded electrodes that enable accurate and continuous monitoring of transepithelial electrical resistance (TEER), a broadly used measure of tissue health and differentiation, and real-time assessment of electrical activity of living cells, as demonstrated in a Heart Chip model.

Ingber, M.D., Ph.D., is the Wyss Institute’s Founding Director and also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, as well as Professor of Bioengineering at the Harvard John A. Paulson School of Engineering…

Read the full article from the Source…

Back to Top